关于我们

新闻中心

产品中心

联系我们

上海聚工液压技术有限公司

联系人:张经理

手机:13671968158 /13681692048

电话: 0553-8766685  传真:0553-8766685

邮箱:jugongyeya@163.com

网址:www.jugongyeya.com

邮编:241000

地址:安徽省芜湖县新芜经济开发区芜屯路4588号(乐泰创业园22栋)


液压柱塞泵的结构组成与维修要点

您的当前位置: 首 页 >> 新闻资讯 >> 公司新闻

液压柱塞泵的结构组成与维修要点

发布日期:2016-11-01 00:00 来源:http://www.jugongyeya.com 点击:


液压柱塞泵的结构组成与维修要点  

    液压系统的效率主要取决于液压泵的容积效率,当容积效率下降到72%时,就需要进行常规维修,更换轴承和老化的密封件,要更换或修复超出配合间隙的磨擦副,使其性能得到恢复。  

     1液压泵的供油形式    

     直轴斜盘式柱塞泵分为压力供油型的自吸油型两种。压力供油型液压泵大都采用有气压的油箱,也有液压泵本身带有补油分泵向液压泵进油口提供压力油的。自吸油型液压泵的自吸油能力很强,无需外力供油。    

气压供油的液压油箱,在每次启动机器后,必须等液压渍箱达到使用气压后,才能操作机械。如液压油箱的气压不足时就担任机器,会对液压泵内的与滑鞭造成拉脱现象,出会造成泵体内回程板与压板的非正常磨损。采用补油泵供油的柱塞泵,使用3000h后,操作人员每日需对柱塞泵检查1-2次,检查液压泵运转声响是否正常。如发现液压缸速度下降或闷车时,就应该对补油泵解体检查,检查叶轮边沿是否有刮伤现象,内齿轮泵间隙是否过大。    

    对于自吸油型柱塞泵,液压油箱内的油液不得低于油标下限,要保持足够数量的液压油。液压油的清洁度越高,液压泵的使用寿命越长。   

     2液压泵用轴承柱塞泵最重要的部件是轴承,如果轴承出现游隙,则不能保证液压泵内部三对磨擦副的正常间隙,同时也会破坏各磨擦副的静液压支承油膜厚度,降低柱塞泵轴承的使用寿命。据液压泵制造厂提供的资料,轴承的平均使用寿命为10000h,超过此值就需要更换新口。拆卸下来的轴承,没有专业检测仪器是无法检测出轴承的游隙的,只能采用目测,如发现滚柱表面有划痕或变色,就必须更换。在更换轴承时,应注意原轴承的英文字母和型号,柱塞泵轴承大都采用大载荷容量轴承,最好购买原厂家,原规格的产品,如果更换另一种品牌,应请教对轴承有经验的人员查表对换,目的是保持轴承的精度等级和载荷容量

   3三对磨擦副检查与修复    

    3.1柱塞杆与缸体孔根据柱塞泵零件的更换标准,当零件的各种间隙超差时,

可按下述方法修复:  

    ( 1)缸体镶装铜套的,可以采用更换铜套的方法修复。首先把一组柱塞杆处径修整到统一尺寸,再用1000#以上的砂纸抛光外径。   缸体安装铜套的三种方法:   

     (a)缸体加温热装或铜套低温冷冻挤压,过盈装配;

     (b)采有乐泰胶粘着装配,这咱方法要求铜外套外径表面有沟槽;

     (c)缸孔攻丝,铜套外径加工螺纹,涂乐泰胶后,旋入装配。

   (2)熔烧结合方式的缸体与铜套,修复方法如下:

     (a)采用研磨棒,手工或机械方法研磨修复缸孔;

     (b)采用座标镗床,重新镗缸体孔;

     (c)采用铰刀修复缸体孔。

  (3)采用“表面工程技术”,方法如下:

   (a)电镀技术:在柱塞表面镀一层硬铬;

   (b)电刷镀技术:在柱塞表面刷镀耐磨材料;

   (c)热喷涂或电弧喷涂或电喷涂:喷涂高碳马氏体耐磨材料;

   (d)激光熔敷:在柱塞表面熔敷高硬度耐磨合金粉末。

  (4)缸体孔无铜套的缸体材料大都是球墨铸铁的,在缸体内壁上制备非晶态薄膜或涂层。因为缸体孔内壁有了这种特殊物质,所以才能组成硬—硬配对的磨擦副。如果盲目地研磨缸体孔,把缸体孔内壁这层表面材料研掉,磨擦更加的结构性能也就改变了。被去掉涂层的磨擦副,如果强行使用,就会磨擦面温度急剧升高,柱塞杆与缸孔发生胶合。 

   另外在柱塞杆表面制备一种独特的薄膜涂层,涂层含有减磨+耐磨+润滑功能,这组磨擦副实际还是硬-软配对,一旦人地改变涂层,也就破坏了最佳配对材料的磨擦副,修理这些特殊的柱塞泵,就要送到专业修理厂。   

  3.2滑靴与斜盘滑靴与斜盘的滑动磨擦是斜盘柱塞泵三对磨擦副中最为复杂的一对。柱塞杆球头与滑靴球窝的间隙(如果柱塞与滑靴间隙超差,柱塞腔中的高压油就会从柱塞球头与滑靴间隙中泄出,滑靴与斜盘油膜减薄,严重时会造成静压支承失效,滑靴与斜盘发生金属接触磨擦,滑靴烧蚀脱落,柱塞球头划伤斜盘。柱塞杆球头与滑靴球窝超出公差1.5倍时,必须成组更换之。表2柱塞杆与缸孔柱塞杆直径φ16  φ20φ25φ30φ35φ40标准间隙0.0150.0250.0250.0300.0350.040极限间隙 0.0400.0500.0600.0700.0800.090柱塞杆球头与滑靴球窝标准间隙0.0100.0100.0150.0150.0200.020极限间隙0.300.300.300.350.350.35    斜盘作用一段时间后,斜盘平面会出现内凹现象,在采用平台研磨前,首先应测量原始尺寸和平面硬度。研磨后,再测出研磨量是多少,如在0.18以内,对柱塞泵使用无防碍;如果超出0.2mm以上,则应采用氮化的方法来保持原有的氮化层厚度。   

    斜盘平面被柱塞球头刮削出沟槽时,可采用激光熔敷合金粉末的方法进行修复。激光熔敷技术既可保证材料的结合强度,又能保证补熔材料的硬度,且不全降低周边组织的硬度。也顺以采用铬相焊条进行手工堆焊,补焊过的斜盘平面需重新热处理,最好采用氮化炉热处理。不管采取哪种方法修复斜盘,都必须恢复原有的尺寸精度、硬度和表面粗糙度。

    3.3配流盘与缸体配流面的修复配流盘有平面配流和球面配流两种形式。球面配流的磨擦副,在缸体配流面划痕比较浅时,通过研磨手段修复;缸体配流面沟槽较深时,应先采用“表面工程技术”手段填平沟槽后,再进行研磨,不可盲目研磨,,以防铜层变薄或漏油出钢基。平面配流形式的磨擦副可以精度比较高的平台上进行研磨。缸体和配流盘在研磨前,应先测量总厚度尺寸和应当研磨掉的尺寸,再补偿到调整垫上。配流盘研磨量较大时,研磨后应重新热处理,以确保淬硬层硬度  

    柱塞泵零件硬度标准柱塞杆推荐硬件HS84柱塞杆球头推荐硬度    大型长轴深井泵振动故障分析与维修通过对大型深井泵的振动故障分析及可能产生振动的各种原因,提出了在现场对电动机及泵进行简易判断的方法-   

    一、深井泵有关技术性能参数型号:30JD-19x3,三级叶轮流量:1450m3/h传动轴长:24.94m,共9根轴泵轴径:080mm泵轴材质:40Cr转速:985r/min推力瓦油温:<50℃冷却水压力:0.8MPa扬水管内径:500mm扬程:80m橡胶轴承润滑介质:清水不含电机时单机重:14t立式电机型号JKL15-6额定功率:500kW额定电压:6000V额定电流:60A电机转子转动惯量:58kg·m2电机重:4t电机及泵体垂直与水平方向允许振幅值:<0.l0mm此深井泵要求水质含沙量不大于0.1%,粒度不大于0.2mm,且水泵的第一级叶轮应浸人动水位lm以下。目前在七、八月洪水期间深井泵抽取金沙江水含沙量最高已接近20%。   

    二、振动故障的判断泵与电机运转中发生振动,在有条件时,首先应断开两者之间的联轴器,分析振源是来自于泵还是电机,并仔细检查立式电机底座与泵的连接固定螺栓是否拧紧,安装后的水平度是否超差。   

    1.电机振动源及判别 

     (1)转子工作转速是否接近临界转速。可以通过计算电机轴的扭转刚度及电机扭振频率是否同电机临界转速、泵角频率及电网频率接近产生共振。尤其是第一次使用的电机,发生振动故障时,要进行分析计算。电机转子的工作转速应至少低于临界转速25%或高于临界转速40%左右。在分析时还要考虑到电机转子的质量不能简化成集中质量情况,而是沿转轴分布,因而分析临界转速时应分析到二阶和三阶等主要临界转速。   

     (2)电机转子的不平衡。电机转子的不平衡是最主要和常见的振动原因,如:17#、19#电机,用速度测振仪(位移计)测得电机振动速度为9.8-l0mm/s,对照IS02372振动速度标准,III类机械应小于4.5mm/s,而在9.8-l0mm/s状态下,用测振仪测得电机振幅值达到0.30mm。为了摸清电机转子的不平衡程度,我们在现场制作了两副钢架分别架设两条平行钢轨(要注意钢架应有足够的刚度),钢轨上表面处理成光滑洁面,用水平仪配合将钢轨面调整水平并固定。检查时将电机转子置于两条钢轨之上,用手推动转子进口计量泵来回滚动多次,每次待其静止后,在转子下面作上标记。用粘性物粘贴在偏重位置的对称点上,再对转子进行多次转动直至转子在随意位置都能停止时,确认电机转子已达到静平衡状态。以等效质量取代粘贴物,完成电机转子的平衡工作。如采用上述方法仍不能解决问题时,就需要将电机转子作动平衡检验。上述两台电机即在转子一侧增加45-5g平衡重量后,振幅值减至0.05mm,用位移计测得振动速度值在2.1mm/s左右。    

     (3)对已正常使用过一段时间的电机,其振动原因要检查轴承间隙是否过大,转轴座固定螺钉是否松动,转轴是否有磨损和弯曲或某一部分绕组短路、气隙不均,转子与定子间环形间隙不均匀一般不得超过10%。特别值得注意的是,电机振幅值在接近标准值时,即认为还在合格范围内的情况下,带负荷以后往往电机振幅值将超标,这是因为整个深井泵传动系统振动的因素是相互影响并共同作用的结果。   

   2.泵体振源及判断   

     (1)泵安装及装配偏差引起的振动。泵体及推力瓦在安装后的水平度和扬水管的垂直度超差将引起泵体的振动,同时这三个控制值又有一定关联。泵体安装完后,扬水管及泵头(不包括滤网)总长为26m,均为悬空挂置,如果扬水管垂直度偏差过大,在泵转动中必将造成扬水管及轴等剧烈振动。扬水管垂直度超差过大还将在泵运转过程中产生交变应力,引起扬水管的断裂。深井泵装配完后,扬水管在总长度范围内,垂直度误差应控制在士2mm。泵的纵横向水平误差<0.05/l000mm。对泵头叶轮静平衡允差不大于10g,组装完后应有8-12mm上下串动间隙。安装及装配间隙误差是造成泵体振动的重要原因。   

     (2)传动轴的涡动。涡动又称“甩转”,是旋转轴发生的一种自激振动,它既不具有自由振动的特征,也不属受迫振动的类型。它的特征是轴在轴承间表现为回转运动,这种振动并不是在转轴到达临界转速时发生,而是在较大范围内发生且与转轴本身的转速关系较少。深井泵的甩转主要由轴承润滑不充分引起,如果轴与轴承间的问隙较大,则回转运动方向与轴的转动方向相反,这种情况又称轴的抖动。特别是深井泵传动轴很长,橡胶轴承和轴的配合间隙为0.20-0.30mm,当轴与轴承存在一定间隙,轴与轴承不同心,中心距较大,间隙中又缺乏润滑时,例如深井泵橡胶轴承的润滑供水管断裂、堵塞、误操作造成供水不充分或不及时等情况下,更易出现抖动。在某一瞬时转动着的轴颈与橡胶轴承在一点接触,轴颈受到轴承给它的切向力,设力作用方向与轴的转速的方向相反,将此力向轴心平移,其力学效应相当于一个反时针方向的转矩和一个作用在轴颈中心的力,这个力平行于轴承壁接触点的切线方向,并且有使轴颈下移的趋势,因此轴颈将沿轴承壁作纯滚动,相当于一副内齿轮,这样就形成与轴旋转方向相反的回转运动。这已被我们在日常运转中的情况所证实,这种情况持续时间稍长还会使橡胶轴承烧损。    

     (3)超负荷引起的振动。泵体推力瓦采用锡基巴氏合金,其允许负载为18MPa(180kgf/cm2)。泵体在起动时,推力瓦的润滑处于边界润滑状态。在泵体出水口处分别安装有电动蝶阀和手动闸阀。在泵起动同时

打开电动蝶阀,由于淤沙沉积造成阀板无法开启或人为因素造成手动闸阀关闭,排气不及时等,必将造成泵体的剧烈振动,并很快烧损推力瓦,如15#、17#泵即是如此。    

      (4)出口湍流振动。在泵出口依次设置Dg500短管、止逆阀、电动蝶阀、手动阀、主管及水锤消除器,水的紊流运动产生无规则的脉动现象,加上各阀的阻挡,局部阻力较大,引起动量的变化及压力的变化,作用于管壁上及泵体上使其振动,这可以观察压力表数值的脉动现象来说明。紊流中脉动变化的压力和速度场不断传递给泵体能量,当紊流的主频率与深井泵系统的固有频率相近时,系统就要吸收能量并引起振动。为减少这种振动影响,阀门应完全开启,短管应有相应长度并加设支座。按此处理后,振动值明显减小。   

      (5)深井泵的扭振。长轴深井泵与电机的联接采用弹性联轴器,传动轴总长24.94m。在泵运转中,存在着不同角频率的主振动的叠加。角频率不同的两个简谐振动合成后的结果不一定是简谐振动,即泵体内部存在两自由度的扭转振动,这是不可避免的。这种振动主要影响和损害推力瓦。因此在保证每块平面推力瓦有相应的进油油楔情况下,我们将原设备随机说明书中规定的68#机油改换成100#机油,提高推力瓦润滑油的粘度,使推力瓦油液动压润滑膜的形成和保持不被破坏。    

     (6)装在同一根梁上的泵相互影响引起的振动。深井泵及电机是安装在两根截面为1450mmx410mm的钢筋混凝土框架梁上的,每台泵与电机的集中质量达18t,两台相邻泵在同一框架梁上的运转振动,这又是一个两自由度的振动系统,当其中一台电机振动严重超标在不带负载试运转时,即弹性联轴器不连接而空转电机时,另一台正常运转泵的电机振幅值升至0.15mm左右,此种情况不易被察觉,应引起注意。

  thumb_20131220094956_321.jpg

相关标签:液压泵,液压系统,柱塞泵

手机logo.png

服务热线:0553-8766685

联系方式:13671968158



地址logo.png

公司地址:安徽省芜湖县新芜经济开发区芜屯路4588号(乐泰创业园22栋)

邮政编码:241000


上海聚工液压技术有限公司

关注我们

在线客服
分享